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1U.S. Geological Survey, California Water Science Center, Sacramento, CA, United States, 2Southwest
Fisheries Science Center, NOAA, Santa Cruz, CA, United States, 3Northwest Fisheries Science Center,
NOAA, Newport, OR, United States
An understanding of oceanographic conditions and processes important to

marine animal ecology is fundamental to the development of effective

management and conservation actions. Longfin Smelt (Spirinchus thaleichthys)

is a pelagic forage fish found in coastal and estuarine waters along the Pacific

coast of North America from Alaska to central California. Substantial population

declines in California’s San Francisco Estuary, where Longfin Smelt are protected

under California’s Endangered Species Act, have prompted extensive study of

estuarine factors associated with the decline. However, coastal factors that affect

up to two-thirds of the Longfin Smelt life cycle are poorly understood andmay be

important drivers of population dynamics. We compiled coastal observations

from numerous sources to estimate the range-wide coastal marine distribution

of Longfin Smelt and assess habitat factors affecting distribution in the northeast

Pacific Ocean. Based on maximum entropy species distribution models, Longfin

Smelt distribution was correlated with depth, distance from the nearest estuary,

sea surface temperature, and sea surface chlorophyll. Longfin Smelt were found

in shallow, higher productivity coastal waters closer to estuaries, with depth and

temperature the most consistent factors influencing distribution. Habitat

suitability was highly variable at the southern extent of the range, particularly

off the California coast, and was largely driven by habitat contractions associated

with warm-water conditions. Study results provide insights into the habitat and

range-wide distribution of an at-risk estuarine-reliant forage fish and are the first

step toward identifying processes that affect the marine portion of the Longfin

Smelt life cycle.
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1 Introduction

Oceanographic conditions and processes, especially those related

to natural climate variability and global climate change, are well

known drivers of marine animal distribution and population

dynamics (Murawski, 1993; Mantua et al., 1997; Cavole et al.,

2016). Understanding how these conditions and processes affect

species of management concern is fundamental to the development

of effective management strategies. Longfin Smelt (Spirinchus

thaleichthys) is an anadromous, schooling, forage fish found in

coastal waters along the Pacific coast of North America from

central California to Alaska. Adults reproduce in fresh and

brackish regions of estuaries, with larval fish rearing in the estuary

prior to emigrating to the ocean (Merz et al., 2013). Timing of these

life history events is uncertain range-wide but presumably varies with

latitude. In California, most reproduction likely occurs from

December to April. Emigration to the ocean is largely completed

by the end of their first year of life, but some individuals may stay in

large estuaries year-round (Bottom et al., 1984; Merz et al., 2013).

Longfin Smelt return to the estuaries and move into spawning

habitats from November to January of their second year (Moyle,

2002; Merz et al., 2013). This complex life history makes Longfin

Smelt vulnerable to threats in freshwater and at sea.

Substantial long-term declines (~99%) of the southern-most

reproducing population (Sommer et al., 2007) have led to Longfin

Smelt being listed as a threatened species under the California

Endangered Species Act (California Fish and Game Commission,

2009), protection in the state of Oregon (Oregon state rule OAR 635-

004-0545), and it is currently a candidate species for protection under

the United States Endangered Species Act (U.S. Fish and Wildlife

Service, 2023). Understanding drivers of Longfin Smelt population

trends is highly management relevant as critical freshwater habitat

used for spawning and rearing is a key component of the state of

California’s water supply. Water is extracted from the upper San

Francisco Estuary to supply municipal water needs for millions of

people in central and southern California and a multi-billion-dollar

agricultural industry in California’s Central Valley (Lund, 2016). The

amount of water that can be withdrawn from the ecosystem is

regulated, in part, to protect at-risk species including Longfin Smelt.

There is no single driver of Longfin Smelt population

abundance (Hobbs et al., 2017), and both freshwater and oceanic

influences are considered important (Feyrer et al., 2015). Within the

San Francisco Estuary, there are several interacting factors thought

to be important contributors to Longfin Smelt decline, including

changes in freshwater outflow, increased water clarity, food web

alterations, degraded physical habitat, and water diversions

(Rosenfield and Baxter, 2007; Sommer et al., 2007; Mac Nally

et al., 2010; Thomson et al., 2010; Maunder et al., 2015; Latour,

2016; Nobriga and Rosenfield, 2016). These factors are important

locally and focus on a small portion of the Longfin Smelt life cycle

within a small fraction of the species’ distribution. Processes taking

place in coastal marine habitats, where up to two thirds of the

Longfin Smelt life cycle takes place, are poorly understood.

Variability in ocean conditions influences the abundance and

condition of many species in the northeast Pacific Ocean, including
Frontiers in Marine Science 02
many resident species within the San Francisco Estuary (Cloern

et al., 2007; Cloern and Jassby, 2012; Feyrer et al., 2015) and

anadromous species with life histories analogous to Longfin

Smelt, Chinook Salmon (Oncorhynchus tshawytscha) (Mantua

et al., 1997; Wells et al., 2016) and Eulachon (Thaleichthys

pacificus) (Montgomery, 2020). Coastal marine habitats in the

northeast Pacific Ocean are heavily influenced by two prevailing

oceanic currents, the southward flowing California Current and the

northward flowing Alaska Current, which are geographically

consistent with population structure in Longfin Smelt (Sağlam

et al., 2021). Coupled with seasonal variability in wind strength

and direction, these currents are associated with seasonal upwelling

and downwelling that influence coastal productivity and local

coastal oceanographic conditions (Huyer, 1983; Royer, 1983) that

may influence Longfin Smelt. These physical processes are

influenced by large-scale ocean climate variability, including the

Pacific Decadal Oscillation (PDO; Mantua et al., 1997), the North

Pacific Gyre Oscillation (NPGO; Di Lorenzo et al., 2008), and the El

Niño Southern Oscillation (ENSO; Trenberth, 2019). Feyrer et al.

(2015) documented a positive relationship between the warm

NPGO phase and age-0 Longfin Smelt in the San Francisco

Estuary, but no other relationship between Longfin Smelt and any

broad oceanographic index has been observed. Additionally, in

recent years there has been substantial variability in ocean

conditions in both current systems, particularly an anomalously

warm water “Blob” that dominated the northeastern Pacific Ocean

in 2014 and 2015, altering physical processes (including upwelling

and downwelling) and many components of the oceanic food web

(Cavole et al., 2016; Peterson et al., 2017).

Recent research has identified Longfin Smelt population

structure within the northeast Pacific Ocean (Sağlam et al., 2021)

and provided insight into Longfin Smelt use of California estuaries

(Garwood, 2017; Brennan et al., 2022). However, there is need for a

range-wide evaluation of Longfin Smelt distribution and an

assessment of coastal habitat suitability under varying

oceanographic conditions, specifically in the California Current

ecosystem where Longfin Smelt have declined at the southern

extent of their range. To address this knowledge gap, we

compiled records of Longfin Smelt occurrence in the northeast

Pacific Ocean (Young and Feyrer, 2022) and used this dataset to

address three objectives: (1) establish the full range of Longfin Smelt

marine distribution, (2) identify key variables that drive marine

habitat suitability in the California Current ecosystem, and (3)

document variability in marine habitat suitability in the California

Current ecosystem over the available period of record.
2 Methods

2.1 Study region and occurrence data

The study region (Figure 1) is comprised of the northeast Pacific

Ocean ranging from the southern border of California at

approximately 32.5° N to the Aleutian Islands of Alaska at

approximately 57° N. Coastline within the study region south of
frontiersin.org
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approximately 48°N is part of the California Current ecosystem, a

region impacted by the California Current (Hickey and Royer,

2009), a surface current of cool, relatively low-salinity, and nutrient-

rich water which flows from the north Pacific Ocean southward

along the North American coast (Figure 1). Underneath the

southward-flowing California Current, a bottom counter-current

flows northward (the Davidson Current). Within the California

Current ecosystem, prevailing northwesterly winds drive offshore

Ekman transport of surface water, resulting in upwelling of deep,

cool, nutrient-rich water along the coastline, contributes greatly to

coastal productivity, especially in spring and summer (Black et al.,

2011). The northward flowing Alaska Current similarly dominates

the Pacific coastlines of Canada and Alaska, with shoreward Ekman

transport of surface water resulting in seasonal downwelling
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(Hickey and Royer, 2009). Because there were no observations

found at a depth of greater than 300 m based on the distribution of

available occurrence data within the northeast Pacific Ocean, the

study region was constrained to the 1000 m isobath to limit

model domain.

Occurrence data for Longfin Smelt in marine habitats were

compiled from a variety of regular and intermittent surveys

(Figure 1; Young and Feyrer, 2022). These include oceanographic

surveys conducted by National Oceanic and Atmospheric

Administration (NOAA) Fisheries (https://www.fisheries.noaa.gov/)

along the Pacific coast of North America, coastal observations by

municipal, local, and state agencies (e.g., City of San Francisco,

California Department of Fish and Wildlife), natural history

museum collections, and other available records (e.g., Litz et al.,

2014; Arimitsu et al., 2017; Garwood, 2017). When available,

additional metadata (date, location, locality, counts) were included.

In addition to compilation of all Longfin Smelt observations, we also

compiled a list of estuaries where Longfin Smelt were captured within

1 km of the estuary mouth (Supplementary Table S1), suggesting the

possibility that these estuaries may be spawning habitat. All data

received a reliability rating, with reliability determined by consistency

between site descriptions and available GPS coordinates, sample age,

and spatial outliers (for further details see Young and Feyrer, 2022).

Observations not deemed reliable were excluded from

statistical analyses.

There were 882 unique, reliable coastal observations of Longfin

Smelt, ranging from the Nushagak River estuary, Alaska, to coastal

Santa Monica, California, and representing a period ranging from

1883 to 2019 (Table 1; Figure 1), with most observations (483)

occurring between 1982 and 2012. Observations from the

northwesternmost (Nushagak River, Bristol Bay, Alaska) and

southernmost (San Pedro Channel near Santa Monica, California)

locations were excluded from species distribution models because

they were clear visual spatial outliers. Most coastal observations

came from Washington (n = 408, ~46%), largely from Puget Sound

and the San Juan Islands with coastal Alaska observations (n = 161,

~18%, largely near Cook Inlet and Icy Bay) next most frequent.

Observations off the Oregon (n = 13) and British Columbia (n = 37)
TABLE 1 Counts of Longfin Smelt observations summarized by region and bimonthly period, with observation data range included in parentheses.

Country StateProvince JanFeb MarApr MayJun JulAug SepOct NovDec

United States Alaska
1

(1977)
5

(1979-2013)
32

(1961-2014)
113

(1960-2019)
7

(1960-2012)
3

(1928-2013)

Canada British Columbia
10

(1934-1996)
6

(1961-1984)
2

(1968-2009)
15

(1959-2006)
1

(1933)
3

(1960-1962)

United States Washington
35

(1906-1987)
26

(1933-2011)
174

(1950-2018)
83

(1932-2014)
28

(1888-1987)
62

(1925-2004)

United States Oregon/Washington 0
20

(2000-2017)
72

(1999-2016)
14

(2001-2012)
2

(1998)
0

United States Oregon
1

(1969)
2

(1963-1992)
3

(1889-2009)
4

(1975-2015)
3

(1952-1975)
0

United States California
13

(1961-2002)
28

(1889-2011)
33

(1941-2012)
30

(1961-2010)
33

(1912-2014)
18

(1949-1999)

Total 60 87 316 259 74 86
fr
FIGURE 1

Map of the northeast Pacific Ocean displaying dominant ocean
currents. Marine Longfin Smelt observations are shown with yellow
crosses and estuaries with recorded Longfin Smelt observations
within 1 km are noted with black circles and notable estuaries
labeled. The 1000 m isobath is indicated by a light gray polygon.
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coasts were notably sparse, potentially due to lower sampling effort

or inconsistent species identification on these coastlines. Thirty-

seven estuaries had recorded Longfin Smelt presence (Figure 1;

Supplementary Table S1). Sampling gear was noted for 688

observations. Of these, bottom trawls accounted for 437

observations (~64%), surface gears (surface trawls and purse

seines) accounted for 228 observations (~33%), and shoreline-

oriented gears (beach seines) accounted for 22 observations (3%).

Due to inclement weather during winter and spring seasons there

were few observations recorded north of Vancouver Island outside

of the May through October period. Size data and life stage data

were rarely available, so all observations were treated equally.
2.2 Environmental data

Within the study region, we hypothesized that four continuous

covariates were likely to influence Longfin Smelt distribution: depth

(bathymetry), distance from nearest estuary, sea surface

temperature, and sea surface chlorophyll concentration (Figure 2).

Depth was included as a covariate because Longfin Smelt are

presumed to be largely coastal, at least during part of their

marine residence (Merz et al., 2013), and distance from nearest
Frontiers in Marine Science 04
estuary was included because estuaries are known spawning

habitats. Sea surface temperature and chlorophyll concentration

(as a measure of ocean productivity) are both oceanographic

parameters that commonly influence the distribution of forage

fish (Cavole et al., 2016).

We retrieved bathymetric depth data at the scale of at least 3

arc-seconds from NOAA’s bathymetry repository including the

Pacific coast (NOAA National Geophysical Data Center, 2003a,

2003b, 2003c), southeast Alaska (NOAANational Geophysical Data

Center, 2009), and British Columbia (Carignan et al., 2013).

Retrieved bathymetry rasters were combined using commercial

GIS software (ArcGIS Pro 2.5.0). To calculate distance from

nearest estuary, we first extracted hydrographic data for the entire

study region from the hydrographic dataset HydroRIVERS (Lehner

and Grill, 2013) obtained from the repository HydroSHEDS

(hydrosheds.org). Using HydroRIVERS, we extracted the mean

annual discharge (1971-2000) from every estuary where Longfin

Smelt were captured (Supplementary Table S1) and used the

smallest of these discharges as a threshold (~ 10 m3 s-1) to

exclude smaller watersheds. We then calculated the covariate

“Distance from Estuary” as the distance of each point in the

sampling region to the nearest estuary that exceeded this

discharge threshold as a continuous raster.
B

C D

A

FIGURE 2

Representative maps of range-wide continuous covariates included in Longfin Smelt species distribution models, including (A) depth, (B) distance
from estuary, (C) sea surface temperature (long-term mean 1981-2010), and (D) sea surface chlorophyll concentration (long-term mean 1981-2010).
Gray dotted line denotes model domain boundary for species distribution model. See Methods for description of data sources.
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For range-wide distribution (Objective 1) and habitat suitability

in the California Current ecosystem (Objective 2) oceanographic

data were obtained from the World Ocean Atlas (Boyer et al., 2018,

www.nodc.noaa.gov/OC5/woa13/). We extracted mean monthly

ocean surface temperature (Locarnini et al., 2013) at the highest

resolution grid available (0.25°) based on 1981-2010, a period

encompassing most observations and for which data were already

compiled. Satellite-derived mean monthly chlorophyll densities

were obtained from NOAA’s COPEPOD project (National

Oceanographic and Atmospheric Administration CoastWatch

Program, 2022) toolkit at the same resolution and year range. For

interannual analyses (Objective 3), we focused on the years 2002

through 2021, when high resolution sea surface chlorophyll data

were available and to focus on how habitat suitability may have

recently changed. Oceanographic data were obtained from NOAA’s

ERDDAP server (National Oceanographic and Atmospheric

Administrat ion, 2022a) us ing the packages ‘rerrdap ’

(Chamberlain et al., 2022) and ‘rerddapXtracto’ (Mendelssohn,

2021) in Program ‘R’ (R Core Team, 2022). Monthly composites

of sea surface temperature (Saha et al., 2018) and sea surface

chlorophyll concentration (National Oceanographic and

Atmospheric Administration CoastWatch Program, 2022) were

downloaded for the period between May 1 and June 30, and the

period from July 1 and August 31, for every year from 2002 to 2021

at a 4 km grid and averaged to account for missing data. All pixels

still missing data were interpolated using thin spline regression

(function ‘Tsp’) from the package ‘fields’ (Nychka et al., 2022) in

Program R. All physical and oceanographic covariates were overlaid

on a 5 km spatial grid of the entire study region, spatially joined to

the nearest grid point, and then converted to continuous raster files

for subsequent statistical analysis.
2.3 Species distribution models

We used species distribution models to identify the range-wide

distribution of Longfin Smelt and important environmental drivers

of habitat suitability within the California Current ecosystem.

Longfin Smelt occurrence data included primarily presence-only

records, and thus we needed to use an analytical approach that was

capable of drawing inference from presence-only data. By definition

there is no verifiable absence in presence-only data, making it assess

whether a lack of observation in a given area is due to real absence, a

failure to detect, or no effort. Maximum entropy models have been

developed as a prominent tool to address this type of data (Elith

et al., 2011; Valavi et al., 2022). We developed Longfin Smelt

distribution models using a maximum entropy approach (Phillips

et al., 2006) with the package ‘MIAmaxent’ (Vollering et al., 2019)

in program ‘R’ (R Core Team, 2022). Generally, maximum entropy

models compare probability distribution in covariate space based

on the conditional density of covariates at presence sites and the

marginal density of covariates across the study area. These marginal

densities are obtained from ‘pseudo-absences’ consisting of

background points randomly chosen from the extent of the study

region (see Figure 1). MIAmaxent uses subset selection to reduce

the number of predictors to account for collinear covariates, reduce
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the need for prescreening variables, and develop ecologically

interpretable models (Vollering et al., 2019).

We included physical and oceanographic environmental

covariates to explain Longfin Smelt distribution and evaluate the

relative contribution of each variable to model fit. To assess

rangewide distributional drivers (Objective 1), we focused on the

entire study region located between the northern and southernmost

recorded observations (Figure 1), while for the California Current

ecosystem (Objectives 2 and 3) we focused on the study region

south of 50° N. For rangewide distribution (Objective 1), we

developed Longfin Smelt distribution models for three bimonthly

periods (May/June, July/August, and September/October),

excluding months where data from the northern extent of the

range were sparse or absent. For California Current distribution

(Objective 2), we built Longfin Smelt distribution models within the

California Current ecosystem for six bimonthly periods (January/

February, March/April, May/June, July/August, September/

October, November/December) using Longfin Smelt occurrence

data south of 50° N. Bimonthly models were implemented to

account for variation in environmental relationships that might

be due to life history; for example, ‘Distance from Estuary’ may be

more important during periods where Longfin Smelt are migrating

toward or staging near spawning estuaries. For assessing

interannual variability within the California Current ecosystem

(Objective 3), we quantified Longfin Smelt habitat suitability in

May/June and July/August for the years 2002-2021 by applying the

species distribution model built in Objective 2 to year-specific

oceanographic conditions. We evaluated May/June and July/

August because these periods had the most observations within

the California Current ecosystem. Habitat suitability results were

presented for the entirety of the California Current and separately

for the southern portion of their range (southward of Cape Blanco,

Oregon, USA). Predicted habitat suitability was then compared to

major oceanographic climate indices (i.e., PDO, NPGO, ENSO)

using linear regression.

Maximum entropy analysis with MIAmaxent fits multiple

derived variables (i.e., transformations, including linear, deviation,

spline, and threshold transformations) of explanatory variables

against occurrence data and pseudo-absences to allow for

flexibility in quantifying non-linear relationships between species

and habitat. Models were selected using forward stepwise selection

using two steps (Halvorsen et al., 2015; Vollering et al., 2019). First,

the best-fitting derived variable (i.e., transformation) for each

explanatory variable (e.g., depth, temperature) is selected. Second,

combinations of the best-fitting derived variables are compared to

identify the best-fitting model.

Variable transformation was implemented using default

MIAmaxent settings. Six transformation types were applied to

continuous variables: linear, monotonous, deviation, forward

hinge, reverse hinge, and threshold , with automatic

transformation selection based on maximizing variation explained

(Halvorsen et al., 2015). Models were selected based on the fraction

of null deviance explained by each model during the selection

process (Mazzoni et al., 2015).

Model performance was evaluated using the area under the

curve (AUC) of the receiver operating characteristic. Model
frontiersin.org
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predictions were generated across the model domain in probability

ratio output (PRO). PRO represents the “relative suitability of one

place versus another” (Vollering et al., 2019). PRO has a range from

0 to ∞, with PRO = 1 representing the “average” suitability of the

data. Values above 1 indicate higher-than-average probability of

presence and values below 1 indicate lower-than-average

probability of presence. Because “average” suitability may not be

sufficient to quantify habitat, we categorized habitat suitability as

weakly suitable (PRO between 0.5 and 1.5), moderately suitable

(PRO between 1.5 and 5), and highly suitable (PRO > 5).
3 Results

3.1 Objective 1 – range-wide distribution
of Longfin Smelt

Range-wide maximum entropy models constructed for all three

bimonthly periods (May-June, July-August, September-October)

identified suitable Longfin Smelt habitat within the study region.

Average area under the curve (AUC) values based on the calibration

data for the best-fitting models from all three bimonthly periods

exceeded 0.9 (Table 2). As determined by model selection, ocean

depth and sea surface temperature were important covariates in the

best-fitting models for all bimonthly periods, distance from estuary

was an important covariate in May-June and July-August, and sea

surface chlorophyll was an important covariate in May-June and

September-October (Figure 3, see Supplementary Table S2 for full

model selection). Sea surface temperature had the highest fraction

of total variation accounted (FTVA) in May-June (0.654), distance

from estuary had the highest FTVA in July-August (0.717), and sea

surface chlorophyll had the highest FTVA in September-October

(0.760). The range of suitable Longfin Smelt habitat, as defined by

PRO > 0.5 during any of the three modeled bimonthly periods, was

contracted toward shore relative to the range described by the

online repository FishBase (Froese and Pauly, 2023; Figure 4). In
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particular, the range of suitable habitat extended farther north and

south than indicated by FishBase, and our models indicated that

Longfin Smelt were closely tied to coastal shelf and nearshore

waters. For model validation, range-wide models were repeated

using only observations between 1982 and 2012, which directly

correspond to the temporal period covered by oceanographic data.

Predicted habitat suitability was similar (Supplementary Figure S1).
3.2 Objective 2 – California Current
ecosystem habitat drivers

Maximum entropy models for the California Current ecosystem

adequately identified suitable Longfin Smelt habitat in all bimonthly

periods (AUC > 0.87; Table 2). As determined by model selection,

ocean depth and sea surface temperature were important covariates

in the best-fitting models for all bimonthly periods, distance from

estuary was an important covariate in November-December, and

sea surface chlorophyll was an important covariate in January-

February, May-June, and July-August (Figure 3, see Supplementary

Table S3 for full model selection). Sea surface chlorophyll was the

most influential covariate in January-February (FTVA = 0.636) and

May-June (FTVA = 0.747). Depth was the most influential covariate

in March-April (FTVA = 0.907), July-August (FTVA = 0.655) and

September-October (FTVA = 0.717), and sea surface temperature

was the most influential covariate in November-December (0.645).

Availability of suitable habitat (PRO > 0.5) across the California

Current ecosystem (Table 3) was lowest in November-December

(26.6% of modeled domain) and highest in September-October

(39.0%). Habitat suitability at the southern extent of the range of

Longfin Smelt (the coast of the State of California, south of 42° N)

was lowest in March-April (19.1% of modeled domain) and highest

in November-December (29.1%). This seasonal variability in

predicted habitat suitability at the southernmost extent of the

model domain was used to target model predictions for

interannual variability in habitat suitability.
TABLE 2 Summary of best-fitting species distribution models by region and season. Includes area-under-the-curve (AUC) for each model, plus the
fraction of the total variation accounted (FTVA) for each parameter included in the best-fitting model.

Region Season
#

Observations AUC

FTVA

Depth
Distance

from Estuary
Sea

Surface Temperature
Sea

Surface Chlorophyll

Rangewide MayJun 314 0.976 0.272 0.023 0.654 0.051

JulAug 258 0.941 0.111 0.717 0.172 —

SepOct 74 0.960 0.08 — 0.16 0.76

CA
Current

JanFeb 49 0.919 0.169 — 0.195 0.636

MarApr 82 0.876 0.907 — 0.093 —

MayJun 281 0.907 0.192 — 0.061 0.747

JulAug 142 0.915 0.655 — 0.151 0.194

SepOct 67 0.900 0.717 — 0.283 —

NovDec 71 0.939 0.257 0.098 0.645 —
Missing values indicate parameters not included in the best-fitting model.
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3.3 Objective 3 – habitat suitability
over time

We predicted habitat suitability for Longfin Smelt for the years

2002-2021 for May/June and July/August, with habitat suitability

varying across years (Figure 5). Average predicted suitable habitat

in the entirety of the California Current ecosystem across all years

was 35.8% of the modeled domain in May/June and 35.3% of the

modeled domain in July/August, ranging between 10.5% (2005) and

35.8% (2007) in May/June, and ranging between 32.8% (2019) and

39.5% (2014) in July/August. Across the entire California Current

ecosystem in May/June, there were frequent strong fluctuations

(~10-20%), with more frequent positive values prior to 2010 and

more frequent negative values after, except for 2014 which had a

notable positive habitat expansion. For the entire California Current
Frontiers in Marine Science 07
ecosystem in July/August, predicted suitable habitat was above

average prior to 2009 and generally below average after, with a

prominent exception in 2014 when the extent of predicted suitable

habitat was the highest in the time series (an expansion of 9.9%

suitable habitat relative to average). Despite observed variability in

July/August, fluctuations never exceeded changes greater than 10%

relative to average.

In contrast, predicted suitable habitat along the California

coast averaged 18.9% of the model domain in May/June, ranging

between 8.5% (2020) and 27.8% (2003), and 25.6% of the model

domain, ranging between 17.6% (2015) and 30.2% (2005). In May/

June, the southern extent of the California Current (including the

California coast), exhibited less variability than the entire

California Current ecosystem, but habitat contractions were

most consistent from 2015-2020 (Figure 6). Overall, predicted
BA

FIGURE 4

Range-wide distribution of Longfin Smelt as estimated by Fishbase (A; fishbase.org) and by species distribution models from this analysis (B), where
potentially suitable habitat is defined as model probability ratio output greater than 0.5 from any of the three modeled seasons (May-June, July-
August, September-October). Gray shading (B) indicates total model domain. Although direct comparisons with probability of occurrence are not
possible, PRO = 1 is approximately equivalent to 50% probability of occurrence.
B

A

FIGURE 3

Marginal response curves for best-fitting range-wide (A) and California Current (B) species distribution models.
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habitat suitability was lower along the California coast than the

entirety of the California Current ecosystem, and exhibited similar

(May/June) or higher (July/August) variability in the extent of

suitable habitat.
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After correcting for multiple tests there were no statistically

significant relationships between climate indices and predicted

habitat suitability (Supplementary Figure S2), although there was

evidence that PDO and NPGO may have some influence on habitat

suitability. Generally, variability in climate indices had stronger

associations with habitat suitability in May and June, with no

associations between climate indices and habitat suitability in July

and August. A positive NPGO index associated with improved

habitat suitability across both the entire California Current

ecosystem and the southern extent (California coast). Positive

ENSO and PDO values were negatively associated with habitat

suitability across the entire California Current, but associations

were weaker in the southern extent.
4 Discussion

Understanding the environmental conditions and processes that

affect species of management concern can be especially difficult for

species that encompass broad latitudinal and environmental gradients

such as Longfin Smelt. We used sparse observational data to identify
FIGURE 5

Proportion of potentially suitable habitat (probability ratio output > 0.5) within the modeled domain of the entire California Current ecosystem (top
panel) and the southern California Current ecosystem including the California coastline (bottom panel). Values are expressed relative to mean habitat
extent (from 2002-2021), and habitat expansions are colored blue and contractions are colored red.
TABLE 3 Percent of modeled domain (see Figure 2) that is potentially
suitable habitat for Longfin Smelt (Probability Ratio Output > 0.5) for
each modeled season and sub-domain (the entire California Current
ecosystem, and the coast south of Cape Blanco).

Season
California

Current Ecosystem
South of

Cape Blanco

January
& February

27.0% 20.9%

March & April 30.7% 19.1%

May & June 30.3% 21.3%

July & August 29.6% 22.7%

September
& October

39.0% 26.5%

November
& December

26.6% 29.1%
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coarse habitat drivers across the entire range of Longfin Smelt, gain

insight into how habitat suitability has changed over time, and enhance

existing knowledge of Longfin Smelt habitat in the northeast Pacific

Ocean. Many fish species that are not the subject of targeted monitoring

efforts are similarly data limited, and this approach could provide a

model for other fish species with limited data.
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4.1 Longfin Smelt marine habitat

Longfin Smelt were predominately associated with coastal,

shallow habitat throughout the entirety of its range. These habitat

associations are generally consistent with those of other osmerid

species in the northeast Pacific Ocean, particularly the anadromous

Eulachon (Allen and Smith, 1988; Montgomery, 2020). Notably, in

regions and surveys where data from benthic and surface trawls

were available (e.g., Puget Sound; coastal habitats within the

California Current ecosystem), Longfin Smelt observations from

benthic trawls were more prevalent. This indicates the potential for

Longfin Smelt to spend more time closer to the ocean bottom than

the surface, similar to Eulachon (Hay and McCarter, 2000).

Collectively, this presents Longfin Smelt as a species tightly tied

to shallow coastal waters, with potential habitat ranging from the

Southern California Bight, California, in the south to Bristol Bay,

Alaska, in the north, with the core, higher probability habitat

ranging from Monterey Bay, California, in the south to Cook

Inlet, Alaska, in the north.

There was evidence for use of estuaries of varying size and

structure, including large, river-dominated estuaries (e.g., San

Francisco Estuary, Columbia River Estuary, Fraser River Estuary,

Skeena River Estuary), embayments (e.g., Humboldt Bay,

California; upper Cook Inlet, Alaska), lagoons (e.g., Lake Earl and

Russian River, California), and the network of fjords, bays, and river

mouths comprising Puget Sound, Washington. We found evidence

for Longfin Smelt use of large glacial fjords (e.g., Kachemak Bay, Icy

Bay, Yakutat Bay; Alaska), but the extent to which Longfin Smelt are

broadly associated with fjord-like systems is unknown. Few Longfin

Smelt were observed in the Alexander Archipelago, an

approximately 480-km long archipelago in southeast Alaska,

which is dominated by narrow fjords with steep coastlines and

deep channels, or from the coast between the Skeena and Fraser

Rivers, which is similarly fjord-dominated. This lack of observations

may result from bias in data availability or may indicate that these

habitats are suboptimal for Longfin Smelt. Notably, Eulachon are

frequently encountered in offshore research surveys and are known

to spawn in many rivers feeding these fjords (Hay and McCarter,

2000; Sutherland et al., 2021), but Longfin Smelt have not

been reported.

In many instances, routine coastal fish community surveys and

commercial bycatch monitoring do not consistently distinguish

Longfin Smelt from similar species in the family Osmeridae (e.g.,

Night Smelt Spirinchus starksi, Whitebait Smelt Allosmerus

elongatus, Surf Smelt Hypomesus pretiosus). This lack of

distinction among species limits our understanding of the

distribution of osmerid fishes in the northeast Pacific Ocean

because verifiable absences cannot be distinguished; therefore, our

dataset is compiled of documented positive observations only. The

consistent identification of Eulachon by fish surveys and bycatch

monitoring has provided substantial information on the

distribution of that species across a wide array of habitats and

locations (Wargo et al., 2014), which may indicate that Longfin

Smelt occupy more habitats than recognized by this dataset.
FIGURE 6

Longfin Smelt habitat suitability along the southern California
Current ecosystem including the California coast for the highest
(2005) and lowest (2015) habitat suitability years (see Figure 3).
Unsuitable habitat had a modeled probability ratio output (PRO) of
<0.5, weakly suitable had a PRO between 0.5 and 1.5, moderately
suitable had a PRO between 1.5 and 5, and highly suitable had a
PRO > 5.
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Although the presence-only dataset in this study has

limitations, maximum entropy models used here provide

substantial insights into the nuances of Longfin Smelt distribution

in the Pacific Ocean. In particular, this analysis identified potential

suitable habitat closer to shore, and the suitable habitat extends

farther north and south than was indicated by FishBase (Froese and

Pauly, 2023). Refined estimates of suitable habitat have implications

for conservation of appropriate habitat at the southern extent of its

range and the potential for northward expansion of Longfin Smelt

habitat as oceanic conditions change (Canning-Clode and Carlton,

2017). These results indicate the importance of using intentionally

chosen modeling approaches to assess fish distribution, particularly

for data-limited species with broad distributions.
4.2 The California Current ecosystem

The California Current ecosystem is highly productive,

heterogeneous, and relatively consistent habitat for Longfin Smelt.

Throughout both the Alaska and California currents, most Longfin

Smelt observations occurred in regions with ocean depths less than

200 m, and few Longfin Smelt were observed in areas with ocean

depths greater than 400 m. However, the California Current

ecosystem is a narrow continental shelf of the coastline. This means

that the spatial footprint of suitable habitat is relatively narrow in the

California Current, especially south of Cape Blanco, Oregon.

Within the California Current ecosystem, sea surface

temperature consistently affected Longfin Smelt distribution

across all seasons. The California Current ecosystem encompasses

the California coast, which is the southern extent of Longfin Smelt

range. The importance of sea surface temperature to Longfin Smelt

is consistent with many organisms observed at the edge of their

range. Fluctuations in important clinal habitat elements that vary

with latitude can exceed physiological preferences and/or tolerances

and can drive poleward migrations (Murawski, 1993) or equatorial

habitat contractions as oceans warm nearer the equator. These

relationships can be complicated because not every equator-ward

contraction is offset by poleward expansions. Although little is

known about ideal temperature ranges in the ocean, in fresh

waters of the San Francisco Estuary, post-larval and juvenile

Longfin Smelt are generally found in temperatures less than 18°C

(Moyle, 2002; Jeffries et al., 2016). This temperature threshold can

be approached or exceeded in coastal marine habitats south of Point

Conception (Santa Barbara County, California) and at points north

during warm years (like those often observed when the El Niño

Southern Oscillation index is positive) or when coastal upwelling is

otherwise curtailed (Locarnini et al., 2013).

Relationships between oceanographic indices and habitat

suitability were not statistically significant based on linear

regression coefficients, but this lack of statistical significance does

not mean that oceanographic indices do not influence predicted

habitat suitability. Oceanographic conditions along the California

coast have been highly variable over the past several decades, with

commensurate variability in the distribution of forage fish and

crustaceans in the California Current (Muhling et al., 2020;

Phillips et al., 2022). The ENSO index is an important driver of
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California coastal conditions and has varied from the highest on

record in 2015-2016 (El Niño conditions, typically warmer than

average) to very low in 2007-2008 and 2010-2011 (La Niña

conditions, typically cooler than average). The PDO, which

historically would fluctuate from “warm” to “cool” phases on

decadal time scales, has exhibited higher-frequency variability

since 1999 (National Oceanographic and Atmospheric

Administration, 2022b), as has the NPGO (Di Lorenzo, 2008).

Generally, variability in climate indices had a stronger impact on

habitat suitability in May and June, suggesting that conditions in the

ocean immediately upon migration from estuarine habitats may be

a key factor driving Longfin Smelt recruitment success, consistent

with both Eulachon (Montgomery, 2020) and Chinook Salmon

(Duffy and Beauchamp, 2011; Tomaro et al., 2012).

In addition to these modes of oceanographic variability, an

anomalously warm water “Blob” heavily influenced the

northeastern Pacific Ocean, including the California Current

ecosystem, from 2013-2015. This persistent and extreme marine

heatwave was at times characterized by ENSO-, NPGO-, and PDO-

like variability (Di Lorenzo and Mantua, 2016), and was associated

with dramatic shifts in distribution and abundance of many taxa

(Cavole et al., 2016), including forage fish such as Pacific Sardine

Sardinops sagax and Northern Anchovy Engraulis mordax

(Muhling et al., 2020).

It is likely that the Blob and the strong El Niño of 2015-2016,

which represented the warmest 3-year period dating back to at least

1920 (Jacox et al., 2018), had significant negative impacts on Eulachon

(Gustafson et al., 2012) and corresponds to the lowest extent of habitat

suitability for Longfin Smelt along the California coast in July and

August. Possible mechanisms for this reduction in habitat could

include direct temperature effects, whereby temperatures would

exceed preferences or tolerances, or they could be indirect effects,

whereby temperature mediates other oceanographic factors. For

example, coastal productivity in this region is heavily influenced by

upwelling strength (Black et al., 2011; Jacox et al., 2014), and changes

in prey availability or composition tied to coastal upwelling may be

associated with Longfin Smelt habitat suitability.
4.3 The black box of Longfin Smelt
life history

Forage fish productivity in coastal ecosystems is heavily

influenced by interactions between zooplankton production and

piscivore predation on forage fishes and, for species which require

low-salinity environments, variation in freshwater flow rates.

Extensive exploration of the Longfin Smelt life cycle has

documented the importance of freshwater outflow to Longfin

Smelt production in the San Francisco Estuary (Jassby et al.,

1995; Kimmerer, 2002; Rosenfield and Baxter, 2007; Nobriga and

Rosenfield, 2016) and Lake Washington (Chigbu, 2000). Ocean

conditions have had demonstrable impacts on Longfin Smelt

recruitment (Feyrer et al., 2015), but mechanisms are poorly

understood. There is strong density dependence and declining

survival during the transition from age 0 fish in the San Francisco

Estuary to age 2 fish that have returned to the San Francisco Estuary
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(Nobriga and Rosenfield, 2016), and these density-dependent

relationships can be caused by food-web-related mechanisms

(Walters and Juanes, 1993). Because San Francisco Estuary

Longfin Smelt are in the ocean between ages 0 and 2, the

mechanisms that are causing density-dependent survival and

declines in overall survival are likely tied to ocean conditions and

possible bottom-up effects; however, additional data would be

needed to confirm this hypothesis. This could include many

possible mechanisms, as changing environmental conditions can

affect prey availability for Longfin Smelt, but also the potential for

prey-switching by possible predators, as seen for Chinook Salmon

Oncorhychus tshawytscha (Wells et al., 2017).

There is strong evidence for variability in Longfin Smelt habitat

suitability associated with fluctuating environmental conditions, but

recent oceanographic conditions have been outside of the range of

historical measurements. These extreme events have led to notable

reductions in predictive capacity for Pacific Sardine and Northern

Anchovy species distribution models trained on historical data

(Muhling et al., 2020). Our models likely have similar limitations

that are further exacerbated by the lack of Longfin Smelt data relative

to Pacific Sardines or Northern Anchovy. Despite this constraint,

these analyses indicate substantive variability in Longfin Smelt ocean

habitat, with additional work needed to clearly identify mechanisms

and contextualize further environmental change. Most importantly,

additional data collection would increase opportunities for inference.

Presence-only methods (such as maximum entropy analysis) are

unable to definitively address occupancy or population characteristics

(such as abundance). Consistent identification of Longfin Smelt by

ongoing marine fisheries surveys would provide recent and reliable

presence-absence and count data, improving species distributionmodels

and allowing for a wider array of statistical techniques that could be used

to address additional facets of Longfin Smelt distributional drivers in the

Pacific Ocean. While Longfin Smelt presumably forage largely on

zooplankton and euphausiids while in the ocean, a comprehensive

assessment of diet, condition, and distribution of subadult Longfin

Smelt would help identify mechanisms by which oceanographic

conditions and bottom-up influences control marine drivers of

Longfin Smelt population dynamics. The Longfin Smelt life cycle is

complex, and comprehensive assessment of all phases could help inform

appropriate management of the species.
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